
Introduction to Fedora 4
Features

Learning Outcomes

Understand the purpose of a Fedora repository

Understand the core features of the software

What is a Fedora Repository?

Secure software that stores, preserves, and
provides access to digital materials

Supports complex semantic relationships between
objects inside and outside the repository

Supports millions of objects, both large and small

Capable of interoperating with other applications
and services

Exposing and Connecting Content

Flexible, extensible content modeling

Atomic resources with semantic connections
using standard ontologies

RDF-based metadata using Linked Data

RESTful API with native RDF response format

Component Stack

Standards

Focus on existing standards

Fewer customizations to maintain

Opportunities to participate in related communities

Core Features

Core Features and Standards

CRUD - Linked Data Platform (LDP) ✔

Versioning - Memento

Authorization - WebAC ✔

Batch Atomic Operations - (a standard??)

Fixity - http://tools.ietf.org/html/rfc3230#section-4.3.2 ✔½

http://tools.ietf.org/html/rfc3230#section-4.3.2

Fedora Vagrant Components

Solr

Triplestore
(Fuseki, Sesame)

● Audit Service
● SPARQL-Query

F4

LDP / WebAC / Memento?? A
pache C

am
el

Hands-on: CRUD

http://localhost:8080/fcrepo/rest/
(fedoraAdmin:secret3)

http://localhost:8080/fcrepo/rest/
http://localhost:8080/fcrepo/rest/

Create a “cover” Container

PUT vs. POST

...Note: names in demo are only for readability

Make “cover” a pcdm:Object

PREFIX pcdm: <http://pcdm.org/models#>

INSERT {
 <http://localhost:8080/fcrepo/rest/cover>
 rdf:type
 pcdm:Object
}
WHERE { }

REDUX
Make “cover” a pcdm:Object

PREFIX pcdm: <http://pcdm.org/models#>

INSERT { <> a pcdm:Object }
WHERE { }

Batch Atomic Operations (BatchOps)

Multiple actions can be bundled together into a
single repository event (BatchOps)

BatchOps can be rolled back or committed

Can be used to maintain consistency

Hands-on: BatchOps

Authorization

The authorization framework provides a plug-in
point within the repository that calls out to an
optional authorization enforcement module

Currently, four authorization implementations
exist:
● No-op
● Role-based
● XACML and
● WebAC

Hands-on: AuthZ

Create following Containers

● “files”
...contained inside “cover”

● “my-acls”
...at top-level is fine

● “acl”
...contained inside “my-acls”

● “authorization”
...contained inside “acl”

Final result (structure)

● cover/
○ files/

● my-acls/
○ acl/

■ authorization/

Final result (structure)

● cover/
○ files/

● my-acls/
○ acl/

■ authorization/

“cover” must point to its ACL

- An ACL must have one or
more authorizations

- “authorizations” define:
● agent(s)
● mode(s)
● resource(s) or class

acl:accessControl

Define the “authorization”

PREFIX acl: <http://www.w3.org/ns/auth/acl#>
PREFIX pcdm: <http://pcdm.org/models#>

INSERT {
<> a acl:Authorization ;
acl:accessToClass pcdm:Object ;
acl:mode acl:Read, acl:Write;
acl:agent "adminuser" .

} WHERE { }

Link “acl” to “cover”

-- Update “cover” resource --

PREFIX acl: <http://www.w3.org/ns/auth/acl#>

INSERT {
<> acl:accessControl </fcrepo/rest/my-acls/acl>

} WHERE { }

Verify AuthZ

** Warning cURL sighting **

curl -i http://localhost:8080/fcrepo/rest/cover
> 401

curl -i -ufedoraAdmin:secret3 http://localhost:8080/fcrepo/rest/cover
> 200

curl -i -uadminuser:password2 http://localhost:8080/fcrepo/rest/cover
> 200

curl -i -utestuser:password1 http://localhost:8080/fcrepo/rest/cover
> 403

Versioning

Versions can be created on resources with an
API call

A previous version can be restored via the
REST-API

Hands-on: Versioning

Create version “v0” of “cover”

** Warning cURL sighting **

curl -ufedoraAdmin:secret3 -i -XPOST -H"slug: v0"
localhost:8080/fcrepo/rest/cover/fcr:versions

Add dc:publisher to “cover”

INSERT {
 <> dc:publisher "The Press"
}
WHERE { }

Create version “v1” of “cover”

curl -ufedoraAdmin:secret3 -i -XPOST -H"slug: v1"
localhost:8080/fcrepo/rest/cover/fcr:versions

* Inspect and Revert

Hands-on: Fixity

Fixity

Over time, digital objects can become corrupt

Fixity checks help preserve digital objects by
verifying their integrity

On ingest, Fedora can verify a user-provided
checksum against the calculated value

A checksum can be recalculated and compared at
any time via a REST-API request

Create some cover binaries

...contained inside “files”

cover.jpg
cover.tif

* Fixity
* Corrupt and test?

Non-core Features

Two Non-Core Feature Types

1. External components

- Consume and act off repository messages

2. Optional, pluggable components

- Separate projects that can interact with
Fedora 4 using a common pattern

Component Architecture

External Component Integrations

Leverages the well-supported Apache Camel
project

- Camel is middleware for integration with
external systems

- Can handle any asynchronous, event-driven
workflow

External - Indexing

Index repository content for search

Content can be assigned the rdf:type property
"Indexable" to filter from non-indexable content

Solr has been tested

External - Triplestore

An external triplestore can be used to index the
RDF triples of Fedora resources

Any triplestore that supports SPARQL-update
can be plugged in

Fuseki, Sesame, BlazeGraph have been tested

External & Pluggable - Audit Service

Maintains a history of events for each
repository resource

Both internal repository events and events from
external sources can be recorded

Uses the existing event system and an external
triplestore

Pluggable - OAI Provider

fcrepo4-oaiprovider implements Open Archives
Protocol Version 2.0 using Fedora 4 as the
backend

Exposes an endpoint which accepts OAI
conforming HTTP requests

Supports oai_dc out if the box, but users are
able to add their own metadata format
definitions to oai.xml

Pluggable - SWORD Server

SWORD is a lightweight protocol for depositing
content from one location to another

fcrepo4-swordserver implements 2.0 AtomPub
Profile, using Fedora 4 as the backend

SWORD v2 includes AtomPub CRUD
operations

Success!

F4: External Integrations
Introducing Camel

What is Camel?
Good question. See: http://camel.apache.org/what-is-
camel.html

So really you want see this: http://stackoverflow.
com/questions/8845186/what-exactly-is-apache-camel

http://camel.apache.org/what-is-camel.html
http://camel.apache.org/what-is-camel.html
http://camel.apache.org/what-is-camel.html
http://stackoverflow.com/questions/8845186/what-exactly-is-apache-camel
http://stackoverflow.com/questions/8845186/what-exactly-is-apache-camel
http://stackoverflow.com/questions/8845186/what-exactly-is-apache-camel

In short...
● Camel is a framework for creating small message based

applications… and then some.

● Camel formalizes working with messages so well it can
be described in multiple formats: Java, Spring/Blueprint
XML, and Scala.

● Camel is all the code you should not have to write in
order to work with queues, files, databases, RESTful
APIs, common data formats, command line utilities,
etc… in a consistent and reliable manner.

Available Camel Components

● ActiveMQ
● AWS SQS
● DropBox
● System calls
● Local files
● FTP

● HTTP resources
● LDAP
● SMTP
● SQL
● Twitter
● etc, etc, etc

http://camel.apache.org/components.html

http://camel.apache.org/components.html
http://camel.apache.org/components.html

Camel can run...
● As a stand-alone Java application

● In a servlet container like Tomcat or Jetty

● In an OSGi runtime such as Karaf

What is OSGi?
● Open Service Gateway Initiative

● Framework for modularizing and deploying Java applications
○ Hot deployment
○ Automatic reloading of configuration
○ Sophisticated dependency resolution
○ XML scripting for complex deployments (features)

Hot Deployment
Bundles can be started, stopped, updated, etc… at runtime!

In other words:

YOU DO NOT HAVE TO RESTART
YOUR SERVER TO UPDATE CODE OR
CONFIGURATION

Terminology

● Apache Camel
○ Endpoints
○ Components
○ Messages
○ Routes

● Apache Karaf -- OSGi
○ Bundles
○ Features

Hands-On: Into the Vagrant

> vagrant ssh
or:

> ssh -p 2222 vagrant@localhost
password = vagrant

Detour: Fixity corruption revisited
> cd /var/lib/tomcat7/fcrepo4-data/fcrepo.binary.directory
> sudo su
> find . -name [cover.jpg-sha1]
> echo hello >> [full-path-from-previous-command]
> exit

Hands-On: Inspect features

> /opt/karaf/bin/client
>> feature:list | grep fcrepo

fcrepo-camel
fcrepo-indexing-triplestore
fcrepo-audit-triplestore
fcrepo-indexing-solr
fcrepo-reindexing
fcrepo-fixity

Hands-On: Helpful Commands

>> feature:install fcrepo-audit-triplestore
>> feature:stop <whichever>
>> camel:route-list
>> bundle:list | grep fcrepo
>> ctrl-d

Hands-On: Watch the log

In a new vagrant ssh terminal:

> sudo tail -f /opt/karaf/data/log/karaf.log

Hands-On: Indexing in triplestore

http://localhost:8080/fuseki

Hands-On: Indexing in triplestore

select * where {
 <http://localhost:8080/fcrepo/rest/cover> ?p ?o
}

Hands-On: Indexing in triplestore
PREFIX ldp: <http://www.w3.org/ns/ldp#>
PREFIX ebucore: <http://www.ebu.ch/metadata/ontologies/ebucore/ebucore#>

select * where {
 ?s ldp:contains ?o .
 ?o ebucore:hasMimeType ?m
}

Hands-On: Indexing in triplestore
Audit
PREFIX premis: <http://www.loc.gov/premis/rdf/v1#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

select ?s ?d where {
 ?s ?p <http://fedora.info/definitions/v4/audit#InternalEvent> .
 ?s premis:hasEventRelatedObject <http://localhost:8080/fcrepo/rest/cover> .
 ?s premis:hasEventDateTime ?d .
 FILTER (?d > "2015-10-06T04:21:14Z"^^xsd:dateTime)

}

Hands-On: Indexing in Solr

http://localhost:8080/solr

collection1

http://localhost:8080/solr
http://localhost:8080/solr

Hands-On: Indexing in Solr

Hands-On: Reindexing - prep

> sudo service tomcat7 stop
> sudo rm -rf /etc/fuseki/databases/test_data/*
> sudo service tomcat7 start

Hands-On: Reindexing - check

select * where {
 <http://localhost:8080/fcrepo/rest/cover> ?p ?o
}

Hands-On: Reindexing

> curl -XPOST localhost:9080/reindexing/cover
-H"Content-Type: application/json" -d
'["activemq:queue:triplestore.reindex"]'

Hands-On: Fixity - setup
> sudo vi /opt/karaf/etc/org.fcrepo.camel.fixity.cfg

Change:
fixity.success=mock:fixity.success

To:
fixity.success=file:/tmp/?fileName=fixitySuccess.log&fileExist=Append

Hands-On: Fixity

> curl -XPOST localhost:9080/reindexing/cover
-H"Content-Type: application/json" -d
'["activemq:queue:fixity"]'

> less /tmp/fixitySuccess.log
> less /tmp/fixityErrors.log

Success!

