
Migrating from
Fedora 3 to 4
Now With More Hydra

Goals for the Session

Understand the basic conceptual models
underlying Fedora 3/CMA, Fedora 4, and
PCDM

Work through a rudimentary migration exercise
with Hydra/Fedora-Migrate

Explore possibilities for enhancing data in
Fedora 4

Differences Between
Fedora 3 and 4

Fedora 3
● Content Model Architecture
● Objects: Collect bytestreams & properties
● Datastreams: Bytestreams in context of an

object, with some properties
Fedora 4
● Linked Data Platform
● LDP RDF resources (objects & containers)
● LDP non-RDF binaries (& description)

Conceptual Models of Repository
Resources

https://wiki.duraspace.org/display/FEDORA38/Content+Model+Architecture
https://wiki.duraspace.org/display/FEDORA38/Content+Model+Architecture
http://www.w3.org/TR/ldp/
http://www.w3.org/TR/ldp/

What About PCDM?

https://github.com/duraspace/pcdm/wiki

Organization of Repository Entities

Fedora 3: Flat
● Objects and datastreams at the top level
● No inherent tree structure

Fedora 4: Hierarchy Possible
● Containers and binaries in a hierarchy
● All resources descend from a root resource

That’s not really even organization

Right, in PCDM we have ORE proxies
“There’s really no hierarchy in a bucket.” ~ Andrew Woods
“What if you put a bucket in your bucket?” ~ Ben Armintor

http://www.openarchives.org/ore/1.0/datamodel#Lineage

Storage of Repository Data

Fedora 3: Akubra
● Objects directory and datastreams directory
● Both objects and datastreams are in a PairTree

Fedora 4: Infinispan & other MODEism
● Containers in a database (e.g. LevelDB)
● Datastreams in a PairTree directory

Identification of Repository
Resources

Fedora 3: PID
● Objects have Persistent Identifers (PIDs)
● Uniform structure
● An object’s PID can never be altered

Fedora 4: Path
● Resources have a repository path
● This can be user-defined or generated via an

ID-minter

How Do These Concepts Correlate?

Fedora 3/CMA Fedora 4/LDP PCDM

Object RDFSource/Container AdminSet/Collection/Object

Datastream NonRDFSource File

PID Path “id”

Akubra (local) Infinispan (clusterable) n/a

Data Mapping

Mapping Properties - Objects
Fedora 3 Fedora 4 Example

PID PID dc:identifier prefix:1234

State state fedora-model:state fedora-model:Active

Label label dc:title Some Title

Created Date createdDate fedora:created 2014-01-20T04:34:26.331Z

Modified Date lastModifiedDate fedora:lastModified 2014-01-20T04:34:26.331Z

Owner ownerID fedora:createdBy Chuck Norris

Mapping Properties - Datastreams
Fedora 3 Fedora 4 Example

DSID ID dc:identifier prefix:1234

State state fedora-model:state fedora-model:Active

Versionable VERSIONABLE fedora:hasVersions true

Label label ebucore:filename Some Title

Created Date createdDate fedora:created 2014-01-20T04:34:26.331Z

Modified Date N/A fedora:lastModified 2014-01-20T04:34:26.331Z

Mimetype MIMETYPE ebucore:hasMimeType image/jpg

Size SIZE premis:hasSize 50000

RDF Isn’t Entirely New to Fedora

http://localhost:8080/fedora-3.8.1/risearch

select $p $o from <#ri> where <info:
fedora/archives:1419123/descMetadata> $p $o

http://localhost:8080/fedora-3.8.1/risearch
http://localhost:8080/fedora-3.8.1/risearch

Fedora 3 Sources of RDF Properties

Fedora Object Property Sources
● profile properties
● RELS-EXT
● DC
● CMA
Datastream Property Sources
● profile properties
● RELS-INT
● CMA

Containment and Structure in FCR 3

● Hints in the core RDFS vocabulary
● Sometimes implemented via Services
● or “Enhanced” content models in FCR 3.4+
● Frequently located in the application layer

https://wiki.duraspace.org/display/FCREPO/Enhanced+Content+Models

The Cleverly Named Fedora-Migrate

Hydra Migration Tools

● Fedora-Migrate Advantages & Disadvantages
● Learn basics of ActiveFedora 9 modeling
● Use fedora-migrate basic features
● Become familiar with fedora-migrate hooks
● Incorporate PCDM via hydra-works

Learning Outcomes

Fedora-Migrate
Advantages, Disadvantages, Example Project

Fedora-Migrate: Advantages

You're soaking in it!
https://github.com/projecthydra-labs/fedora-migrate

● Built around the Rubydora library of Hydra <= 8
● Make data accessible and functional in the new

environment
● Run migration on the stack that apps will be built on
● Very customizable
● Simplest use cases have convenient Rake support

https://github.com/projecthydra-labs/fedora-migrate
https://github.com/projecthydra-labs/fedora-migrate

Fedora-Migrate: Disadvantages

● Not built for speed
● Makes some assumptions about FCR 3

relationships that may require customization
○ Object-to-Object relations
○ Unidirectionality, not spidering

● No RELS-INT out of box
● No DC out of box
● Only file containment out of box
● Broader difficulty of PID to Path mapping

Fedora-Migrate: Example Project

● Example fixtures available in vagrant VM at http:
//localhost:8080/fedora-3.8.1

● foxml source from https://github.
com/barmintor/usna_demo_hydra8

● Hydra-9 app with “fedora-migrate” at https://github.
com/barmintor/fedora-migrate-workshop
○ already cloned on the vagrant

■ vagrant ssh
■ > cd fedora-migrate-workshop
■ > git pull origin # to make sure it's up to date
■ … or clone on your machine if you prefer to edit

there

http://localhost:8080/fedora-3.8.1
http://localhost:8080/fedora-3.8.1
http://localhost:8080/fedora-3.8.1
https://github.com/barmintor/usna_demo_hydra8
https://github.com/barmintor/usna_demo_hydra8
https://github.com/barmintor/usna_demo_hydra8
https://github.com/barmintor/fedora-migrate-workshop
https://github.com/barmintor/fedora-migrate-workshop
https://github.com/barmintor/fedora-migrate-workshop

Fedora-Migrate: Example Project
Here's an example rake task for migrating objects by ns:
desc "Migrate all my objects"

task migrate: :environment do

 Work.name

 GenericFile.name

 Collection.name

 AdministrativeSet.name

 # a convenient but difficult to extend migration convenience method

 usna = FedoraMigrate.migrate_repository(namespace: "usna",options:{})

 archives = FedoraMigrate.migrate_repository(namespace: "archives",
options:{})

 report = FedoraMigrate::MigrationReport.new

 report.results.merge! usna.report.results

 report.results.merge! archives.report.results

 report.report_failures STDOUT

end

Fedora-Migrate: Example Project
It will also be convenient to be able to delete and reset:

desc "Delete all the content in Fedora 4"

task clean: :environment do

 ActiveFedora::Cleaner.clean!

end

This duplicates the fedora:migrate:reset Rake task. Both of
these tasks can be loaded from a file under lib/tasks with
the 'rake' extension.

Fedora-Migrate: Example Project

checkpoint branch:
fedora-migrate/master

has no ActiveFedora models

edits lib/tasks/migrate.rake to include clean & migrate tasks

adds some helpful overrides to FedoraMigrate methods to
the rake task file

Rudimentary
ActiveFedora Modeling

Rudimentary ActiveFedora Modeling

Candidate models are identified by name
Given a CModel info:fedora/afmodel:GenericFile
Fedora-Migrate will look for a model called GenericFile
The model must inherit from ActiveFedora::Base
FCR 3/4 source indicate model in RELS-EXT fedora-model:hasModel
FCR 4 source also indicates types in primaryType and mixinTypes

Datastreams are modeled by File containment
Given a Fedora 3 object that has a datastream ‘content’
Fedora-Migrate will migrate if the Fedora 4 model contains a ‘content’ resource
Assuming the ‘content’ resource class inherits from ActiveFedora::File

Rudimentary ActiveFedora Modeling

Consider this very basic model, and look at the Fedora 3
fixtures. What other models do we need to represent? What
files ought they contain? Try migrating the descMetadata
datastream.

You should be able to run rake clean & rake migrate as you
iterate.

Edit app/models/generic_file.rb

class GenericFile < ActiveFedora::Base
 contains 'content',
 autocreate: false,

 class_name: 'ActiveFedora::File'

end

Rudimentary ActiveFedora Modeling
In the rest of the workshop, we'll want a little more control over
the migration. We'll get this flexibility by calling the Fedora::
Migrate movers individually. Edit lib/tasks/migrate.rake to run
the movers in an editable Proc:

 Collection.name

 AdministrativeSet.name

 migration = Proc.new do |pid|

 source = FedoraMigrate.source.connection.find(pid)

 target = nil # has not yet been migrated!

 options = {}

 mover = FedoraMigrate::ObjectMover.new(source, target, options: options)

 mover.migrate

 target = mover.target

 mover = FedoraMigrate::RelsExtDatastreamMover.new(source, target).
migrate

 end

Rudimentary ActiveFedora Modeling
And call the Proc for each of the objects in our example - Edit
lib/tasks/migrate.rake:

 migration = Proc.new do |pid|

 # snipping Proc body for slide

 end

 assets =

 ["usna:3","usna:4","usna:5","usna:6","usna:7","usna:8","usna:9"]

 works =

 ["archives:1408042", "archives:1419123", "archives:1667751"]

 collections =

 ["collection:1", "collection:2"]

 assets.each { |pid| migration.call(pid) }

 works.each { |pid| migration.call(pid) }

 collections.each { |pid| migration.call(pid) }

Rudimentary ActiveFedora Modeling

The sample data includes 4 FCR 3 CModels:
● GenericFile
● Work
● Collection
● AdministrativeSet*

The example migrations will be smoothest if all
of them are at least minimally modeled in
ActiveFedora (though workshop doesn't do
much with the AdministrativeSet object).

Rudimentary ActiveFedora Modeling

Checkpoint branch:
fedora-migrate-workshop/migrate-simple

includes very simple models corresponding to
the sample FCR 3 CModels

these models mix-in Hydra::Works behaviors
that will be used later

edits lib/tasks/migrate.rake to run movers
individually

Modeling RDF Properties
in FCR 3 Datastreams

Modeling RDF Properties in FCR 3
Datastreams

Once you have basic models working with the
migration task, try to migrate RDF data as
properties rather than files by passing a :
convert option to the RepositoryMigrator or the
ObjectMover.

Look at the migrated objects to see where the
models need to elaborated to support new
properties. Also note that DC is not migrated by
default.

Modeling RDF Properties in FCR 3
Datastreams

Some of the objects have description stored in
a datastream called 'descMetadata'.

We can migrate this data simply as a contained
File or, because it is RDF properties, store the
properties "natively" on the FCR 4 objects.

Modeling RDF Properties in FCR 3
Datastreams

The target properties must be defined on your
models:
class Work < ActiveFedora::Base

 property :identifier, predicate: ::RDF::Vocab::DC.identifier do |index|

 index.as :symbol, :facetable

 end

 property :title, predicate: ::RDF::Vocab::DC.title do |index|

 index.as :stored_searchable, :facetable

 end

 property :creator, predicate: ::RDF::Vocab::DC.creator do |index|

 index.as :symbol, :facetable

 end

 property :created, predicate: ::RDF::Vocab::DC.created do |index|

 index.as :stored_sortable, type: :date

 end

end

Modeling RDF Properties in FCR 3
Datastreams

Fedora-Migrate will then convert RDF properties if
an option is passed for the appropriate datastream.
Edit your rake task:

source = FedoraMigrate.source.connection.find(pid)

target = nil # create a new target

options = { convert: "descMetadata" } # map DS as properties

mover = FedoraMigrate::ObjectMover.new(source, target, options)

mover.migrate

… then run rake clean && migrate. Make sure the
options hash is passed correctly (no {options: …}
key should be used).

Modeling RDF Properties in FCR 3
Datastreams

Checkpoint branch:
fedora-migrate-workshop/migrate-metadata

defines properties for all the descMetadata
statements on the Work model

edits lib/tasks/migrate.rake to include the
convert options

Customizing Fedora-
Migrate with Hooks

Customizing Fedora-Migrate with
Hooks

Hooks are defined in FedoraMigrate::Hooks

Methods similar to action filters on Rails
controllers, or callbacks on ActiveRecord objects.

Mover#migrate implementations follow this pattern:
1. before hook
2. migrate action
3. after hook
4. save

Customizing Fedora-Migrate with
Hooks

Define a state property on your models:

class Work < ActiveFedora::Base

 include Hydra::Works::WorkBehavior

 property :state,

 predicate: ActiveFedora::RDF::Fcrepo::Model.state,

 multiple: false do |index|

 index.as :symbol, :facetable

 end

end

You'll need to add this property to all 4 models!

Customizing Fedora-Migrate with
Hooks

Modules like this represent RDF vocabularies:

class Work < ActiveFedora::Base

 include Hydra::Works::WorkBehavior

 property :state,

 predicate: ActiveFedora::RDF::Fcrepo::Model.state,

 multiple: false do |index|

 index.as :symbol, :facetable

 end

end

The URI objects for the RDF properties and
instances are accessible as properties (above) or as
a hash (::Model[:state]).

Customizing Fedora-Migrate with
Hooks

Override a hook to migrate object state:
module FedoraMigrate::Hooks

 def after_object_migration

 states = {'A' => :Active, 'I' => :Inactive, 'D' => :Deleted }

 if states.has_key? source.state

 state = states[source.state]

 target.state =

 ActiveFedora::RDF::Fcrepo::Model[state]

 end

 end

end

rake clean && migrate

Customizing Fedora-Migrate with
Hooks

Checkpoint branch:
fedora-migrate-workshop/migrate-hook

defines a state property in the 4 ActiveFedora
models

edits lib/tasks/migrate.rake to set the state
property in an after_object_migration hook

PCDM via Hydra-Works

Hydra-Works brings an implementation of
PCDM to ActiveFedora. This impacts the way
that membership and structure are modeled: It
introduces LDP DirectContainers for the former
and Proxies for the latter.

PCDM via Hydra-Works

https://github.com/projecthydra-labs/hydra-works
https://github.com/duraspace/pcdm/wiki
https://www.w3.org/TR/ldp/#ldpdc
https://github.com/duraspace/pcdm/wiki#ordering-extension

If we were starting from scratch, we would add Hydra::
Works model mixins to our models, identifying their PCDM
role as appropriate.

PCDM via Hydra-Works

Collection maps to pcdm:Collection

Work and GenericFile are both types of pcdm:
Object

AdministrativeSet was borrowed directly from
PCDM

PCDM via Hydra-Works

https://github.com/duraspace/pcdm/wiki/Works-Extension

A pcdm:FileSet is a group of related Files,
typically a single master File and its derivatives.
These Files can be immediately contained, or
be aggregated FileSets. Our corresponding
model is GenericFile.

A pcdm:Work is intended to represent
"intellectual entities" or "objects". Its members
may be FileSets or other Works. This
corresponds to our Work model.

PCDM via Hydra-Works

Hydra::Works::FileSetBehavior
- adds directly contained Files via properties "original_file",

"thumbnail" and "extracted_text"
- adds a derivative generation mixin that you may use to

create thumbnails
class GenericFile < ActiveFedora::Base

 include Hydra::Works::FileSetBehavior

 property :state, predicate: ActiveFedora::RDF::Fcrepo::Model.
state, multiple: false do |index|

 index.as :symbol, :facetable

 end

end

PCDM via Hydra-Works

We need to implement a FedoraMigrate::Mover that is aware of
this mixin:
module FedoraMigrate::Works

 class FileSetMover < FedoraMigrate::ObjectMover

 def migrate_content_datastreams

 super

 if target.is_a?(GenericFile) && (ds = source.datastreams['content'])

 ofile = target.build_original_file

 mover = FedoraMigrate::DatastreamMover.new(ds, ofile, options)

 target.original_file = ofile

 save

 report.content_datastreams << ContentDatastreamReport.new(ds.id, mover.
migrate)

 end

 end

 end

end

PCDM via Hydra-Works

Once the content DS is migrating to the original_file property, we
can generate derivatives in the rake task, for example:

 source = FedoraMigrate.source.connection.find(pid)

 target = nil

 options = { convert: "descMetadata" }

 mover = FedoraMigrate::Works::FileSetMover.new(source, target, options)

 mover.migrate

 target = mover.target

 mover = FedoraMigrate::RelsExtDatastreamMover.new(source, target).migrate

 target.create_derivatives if target.is_a?(GenericFile)

Be advised that this is somewhat slow- you may want to restrict
the migration to a single object for expediency.

PCDM via Hydra-Works

With suitable libraries installed, Hydra-Works can create
derivatives for more than images- but it requires characterization:

 source = FedoraMigrate.source.connection.find(pid)

 target = nil

 options = { convert: "descMetadata" }

 mover = FedoraMigrate::Works::FileSetMover.new(source, target, options)

 mover.migrate

 target = mover.target

 mover = FedoraMigrate::RelsExtDatastreamMover.new(source, target).migrate

 if target.is_a?(GenericFile)

 Hydra::Works::CharacterizationService.run(target)

 target.save

 target.create_derivatives

 end

PCDM via Hydra-Works

The characterization service does basic format analysis via FITS,
and adds some technical metadata to our FileSet objects based
on original_file.

PCDM via Hydra-Works

Hydra::Works::WorkBehavior implements ordered versions of
membership properties: ordered_members, and filtered
accessors like ordered_file_sets & ordered_works

class Work < ActiveFedora::Base

 include Hydra::Works::WorkBehavior

 property :state, predicate: ActiveFedora::RDF::Fcrepo::Model.
state, multiple: false do |index|

 index.as :symbol, :facetable

 end

end

PCDM via Hydra-Works

The sample FCR 3 Work objects have ordered lists in a METS
structMap, stored in a datastream called 'structMetadata'. For
the membership to reflect this order, we need a new
FedoraMigrate::Mover implementation.

class Work < ActiveFedora::Base

 include Hydra::Works::WorkBehavior

 property :state, predicate: ActiveFedora::RDF::Fcrepo::Model.
state, multiple: false do |index|

 index.as :symbol, :facetable

 end

end

PCDM via Hydra-Works

module FedoraMigrate

 module Works

 class StructureMover < FedoraMigrate::Mover

 def migrate

 before_structure_migration

 migrate_struct_metadata

 after_structure_migration

 save

 super

 end

 def migrate_struct_metadata

 ds = source.datastreams['structMetadata']

 if ds

 ns = {mets: "http://www.loc.gov/METS/"}

 structMetadata = Nokogiri::XML(ds.content)

 members = {}

 structMetadata.xpath("/mets:structMap/mets:div", ns).each
do |node|

 members[node["ORDER"]] = node["CONTENTIDS"]

 end

 members.keys.sort {|a,b| a.to_i <=> b.to_i}.each do |key|

 member_id = id_component(members[key])

 member = ActiveFedora::Base.find(member_id)

 target.ordered_members << member

 end

 end

 end

 def migrate_object(fc3_uri)

 RDF::URI.new(ActiveFedora::Base.id_to_uri(id_component
(fc3_uri)))

 end

 end

 end

end

PCDM via Hydra-Works

class FedoraMigrate::Works::StructureMover < FedoraMigrate::Mover

 def migrate; … end

 def migrate_struct_metadata

 ds = source.datastreams['structMetadata']

 if ds

 ns = {mets: "http://www.loc.gov/METS/"}

 structMetadata = Nokogiri::XML(ds.content)

 members = {}

 structMetadata.xpath("/mets:structMap/mets:div", ns).each do |node|

 members[node["ORDER"]] = node["CONTENTIDS"]

 end

 members.keys.sort {|a,b| a.to_i <=> b.to_i}.each do |key|

 member_id = id_component(members[key])

 member = ActiveFedora::Base.find(member_id)

 target.ordered_members << member

 end

 end

 end

end

PCDM via Hydra-Works

class FedoraMigrate::Works::StructureMover < FedoraMigrate::Mover

 def migrate; … end

 def migrate_struct_metadata; … end

 # borrowed from FedoraMigrate::RelsExtDatastreamMover

 def migrate_object(fc3_uri)

 id_comp = id_component(fc3_uri)

 base_uri = ActiveFedora::Base.id_to_uri(id_comp)

 RDF::URI.new(base_uri)

 end

end

PCDM via Hydra-Works

With the mover implemented, you can add it to the migration in
the rake task (remember to stub the hooks as well):

 if target.is_a?(GenericFile)

 Hydra::Works::CharacterizationService.run(target)

 target.save

 target.create_derivatives

 end

 if target.is_a?(Work)

 FedoraMigrate::Works::StructureMover.new(source, target, options).
migrate

 end

PCDM via Hydra-Works

After running "rake clean" and "rake migrate", you should
now see different contained resources for the works:

PCDM via Hydra-Works

Checkpoint branch:
fedora-migrate-workshop/migrate-works

uses Hydra::Works to order the FileSets
belonging to a Work via Proxies in
DirectContainers

edits lib/tasks/migrate.rake to create derivatives
of GenericFiles with the FileSetBehavior mixin

PCDM via Hydra-Works

Questions? Ideas?

● freenode#projecthydra

● @barmintor
● armintor@gmail.com / ba2213@columbia.

edu

mailto:armintor@gmail.com

